Yakın Doğu Üniversitesi
Büyük Kütüphane
Adres
Yakın Doğu Bulvarı, Lefkoşa, KKTC
İletişim
[email protected] · +90 (392) 223 64 64
Google Jackets'tan alınan resim
OpenLibrary'den resim

A type-2 fuzzy wavelet neural network for system identification and control. Rahib H. Abiyev.

Yazar: Katkıda bulunan(lar):Materyal türü: MakaleMakaleDil: İngilizce Yayın ayrıntıları:Elsevier Ltd. 2013.Konu(lar): LOC sınıflandırması:
  • TK5101
Çevrimiçi kaynaklar: İçindekiler: In Journal of the Franklin Institute Sep2013, Vol. 350 Issue 7, p1658-1685.Özet: This paper proposes a novel, type-2 fuzzy wavelet neural network (type-2 FWNN) structure that combines the advantages of type-2 fuzzy systems and wavelet neural networks for identification and control of nonlinear uncertain systems. The proposed network is constructed on the base of a set of fuzzy rules that includes type-2 fuzzy sets in the antecedent part and wavelet functions in the consequent part. For structure identification, a fuzzy clustering algorithm is implemented to generate the rules automatically and for parameter identification the gradient learning algorithm is used. The effectiveness of the proposed system is evaluated for identification and control problems of time-invariant and time-varying systems. The results obtained are compared with those obtained by the use of type-1 FWNN based systems and other similar studies.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
Yıldız derecelendirmeleri
    Ortalama puan: 0.0 (0 oy)
Mevcut
Materyal türü Geçerli Kütüphane Yer numarası Durum Barkod
Online Electronic Document NEU Grand Library Online electronic TK5101 .T97 2013 (Rafa gözat(Aşağıda açılır)) Ödünç verilmez EOL-3

This paper proposes a novel, type-2 fuzzy wavelet neural network (type-2 FWNN) structure that combines the advantages of type-2 fuzzy systems and wavelet neural networks for identification and control of nonlinear uncertain systems. The proposed network is constructed on the base of a set of fuzzy rules that includes type-2 fuzzy sets in the antecedent part and wavelet functions in the consequent part. For structure identification, a fuzzy clustering algorithm is implemented to generate the rules automatically and for parameter identification the gradient learning algorithm is used. The effectiveness of the proposed system is evaluated for identification and control problems of time-invariant and time-varying systems. The results obtained are compared with those obtained by the use of type-1 FWNN based systems and other similar studies.

Bu materyal hakkında henüz bir yorum yapılmamış.

bir yorum göndermek için.