Yakın Doğu Üniversitesi
Büyük Kütüphane
Adres
Yakın Doğu Bulvarı, Lefkoşa, KKTC
İletişim
[email protected] · +90 (392) 223 64 64
Google Jackets'tan alınan resim
OpenLibrary'den resim

Biomechanical comparison of implant retained fixed partial dentures with fiber reinforced composite versus conventional metal frameworks: A 3D FEA study Gokce Meric, Erkan Erkmen, Ahmet Kurt, Atilim Eser, Yahya Tunc.

Yazar: Materyal türü: MakaleMakaleDil: İngilizce Yayın ayrıntıları:2011. Elsevier,ISSN:
  • 17516161
Konu(lar): LOC sınıflandırması:
  • TA153
İçindekiler: Journal Of The Mechanical Behavior Of Biomedical Materials JAN 2011 , Vol 4 Issue 1, p107-116 Özet: Fiber reinforced composite (FRC) materials have been successfully used in a variety of commercial applications. These materials have also been widely used in dentistry. The use of fiber composite technology in implant prostheses has been previously presented, since they may solve many problems associated with metal alloy frameworks such as corrosion, complexity of fabrication and high cost. The hypothesis of this study was that an FRC framework with lower flexural modulus provides more even stress distribution throughout the implant retained fixed partial dentures (FPDs) than a metal framework does. A 3-dimensional finite element analysis was conducted to evaluate the stress distribution in bone, implant-abutment complex and prosthetic structures. Hence, two distinctly different models of implant retained 3-unit fixed partial dentures, composed of Cr-Co and porcelain (M-FPD model) or FRC and particulate composite (FRC-FPD model) were utilized. In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal forces were simulated. When the FRC-FPD and M-FPD models were compared, it was found that all investigated stress values in the M-FPD model were higher than the values in the FRC-FPD model except for the stress values in the implant-abutment complex. It can be concluded that the implant supported FRC-FPD could eliminate the excessive stresses in the bone-implant interface and maintain normal physiological loading of the surrounding bone, therefore minimizing the risk of peri-implant bone loss due to stress-shielding. (C) 2010 Elsevier Ltd. All rights reserved.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
Yıldız derecelendirmeleri
    Ortalama puan: 0.0 (0 oy)
Mevcut
Materyal türü Geçerli Kütüphane Yer numarası Durum Barkod
Online Electronic Document NEU Grand Library Online electronic TA153 .B56 2011 (Rafa gözat(Aşağıda açılır)) Ödünç verilmez EOL-264

Fiber reinforced composite (FRC) materials have been successfully used in a variety of commercial applications. These materials have also been widely used in dentistry. The use of fiber composite technology in implant prostheses has been previously presented, since they may solve many problems associated with metal alloy frameworks such as corrosion, complexity of fabrication and high cost. The hypothesis of this study was that an FRC framework with lower flexural modulus provides more even stress distribution throughout the implant retained fixed partial dentures (FPDs) than a metal framework does. A 3-dimensional finite element analysis was conducted to evaluate the stress distribution in bone, implant-abutment complex and prosthetic structures. Hence, two distinctly different models of implant retained 3-unit fixed partial dentures, composed of Cr-Co and porcelain (M-FPD model) or FRC and particulate composite (FRC-FPD model) were utilized. In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal forces were simulated. When the FRC-FPD and M-FPD models were compared, it was found that all investigated stress values in the M-FPD model were higher than the values in the FRC-FPD model except for the stress values in the implant-abutment complex.
It can be concluded that the implant supported FRC-FPD could eliminate the excessive stresses in the bone-implant interface and maintain normal physiological loading of the surrounding bone, therefore minimizing the risk of peri-implant bone loss due to stress-shielding. (C) 2010 Elsevier Ltd. All rights reserved.

Bu materyal hakkında henüz bir yorum yapılmamış.

bir yorum göndermek için.