Yakın Doğu Üniversitesi
Büyük Kütüphane
Adres
Yakın Doğu Bulvarı, Lefkoşa, KKTC
İletişim
[email protected] · +90 (392) 223 64 64
Google Jackets'tan alınan resim
OpenLibrary'den resim

An Adaptive Neuro-Fuzzy Architecture for Intelligent Control of a Servo System and its Experimental Evaluation. Ayse Cisel Aras, Erdal Kayacan, Yesim Oniz, Okyay Kaynak, Rahib Abiyev.

Yazar: Materyal türü: MakaleMakaleDil: İngilizce Yayın ayrıntıları:IEEE, 2010.ISBN:
  • 978-1-4244-6391-6
Konu(lar): LOC sınıflandırması:
  • TK5105.5
Çevrimiçi kaynaklar: İçindekiler: IEEE international symposium on industrial electronics (ISIE 2010) 2010, p.68-73Özet: In this paper the development of an adaptive neuro-fuzzy architecture for the speed control of a servo system with nonlinear load is presented. The synthesis of the structure is described and a learning algorithm for the neuro-fuzzy control system is derived. The supervised learning algorithm is used to train the unknown coefficients of the system, and then the fuzzy rules of the neuro-fuzzy system are generated. A number of simulation studies are carried out, and the results are compared with those obtained with a PI controller tuned using desired time response characteristics. These and the experimental studies presented show that the neuro-fuzzy control system has a better control performance than the conventional PI controller.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
Yıldız derecelendirmeleri
    Ortalama puan: 0.0 (0 oy)
Mevcut
Materyal türü Geçerli Kütüphane Yer numarası Durum Barkod
Online Electronic Document NEU Grand Library Online electronic TK5105.5 .A5 2010 (Rafa gözat(Aşağıda açılır)) Ödünç verilmez EOL-17

In this paper the development of an adaptive neuro-fuzzy architecture for the speed control of a servo system with nonlinear load is presented. The synthesis of the structure is described and a learning algorithm for the neuro-fuzzy control system is derived. The supervised learning algorithm is used to train the unknown coefficients of the system, and then the fuzzy rules of the neuro-fuzzy system are generated. A number of simulation studies are carried out, and the results are compared with those obtained with a PI controller tuned using desired time response characteristics. These and the experimental studies presented show that the neuro-fuzzy control system has a better control performance than the conventional PI controller.

Bu materyal hakkında henüz bir yorum yapılmamış.

bir yorum göndermek için.