| 000 | naa a22 7ar4500 | ||
|---|---|---|---|
| 005 | 20151023093144.0 | ||
| 008 | 150528t xxu||||| |||| 00| 0 tu d | ||
| 001 | 265866 | ||
| 016 | _a000319790500010 | ||
| 022 | _a0932-0784 | ||
| 040 | _aNEU | ||
| 041 | _aeng | ||
| 050 | 0 | 4 | _aQC23 |
| 100 | 1 |
_9573001 _aIkhdair, Sameer M., _cAssoc. Prof. Dr. _ |
|
| 245 | 1 | 0 |
_aApproximate Relativistic Solutions for a New Ring-Shaped Hulthen Potential _cSameer M. Ikhdair, Majid Hamzavi. |
| 260 |
_bVerlag Z Naturforsch, _c2013. |
||
| 520 | _aApproximate bound state solutions of the Dirac equation with the Hulthen plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and the corresponding two-component wave function are calculated by solving the radial and angular wave equations within a recently introduced shortcut of the Nikiforov-Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are given in terms of the Jacobi polynomials. We use an exponential approximation in terms of the Hulthen potential parameters to deal with the strong singular centrifugal potential term l(l + 1)r(-2). Under the limiting case, the solution can be easily reduced to the solution of the Schrodinger equation with a new ring-shaped Hulthen potential. | ||
| 650 | 0 |
_9572720 _aNear East University Article |
|
| 650 | 0 |
_9572723 _aYakın Doğu Üniversitesi Makale |
|
| 650 |
_9572798 _aDirac equation |
||
| 650 |
_9574688 _aRing-Shaped Potentials; |
||
| 650 |
_9573229 _aApproximation Schemes |
||
| 650 |
_9573617 _aSchrodinger Equation |
||
| 650 |
_9574689 _aL-state solutıons; |
||
| 773 |
_gMar-Apr 2013, Volume: 68, Issue: 3-4, Pages: 279-290 _tZeıtschrıft Fur Naturforschung Sectıon A _tA Journal Of Physıcal Scıences _x09320784 |
||
| 856 | _uhttp://library.neu.edu.tr:2048/login?url=http://dx.doi.org/10.5560/ZNA.2012-0109 | ||
| 942 |
_x1000005 _kQC0000023A672013 _cOED |
||
| 999 | _c242553 | ||